Petroleum transport is the transportation of petroleum and derivatives such as gasoline (petrol). Petroleum is transported via rail cars, trucks, tanker vessels, and through pipelines. Which method is used to move this oil depends on the amount that is being moved and its destination. The biggest problems with moving this oil are pollution and the chance of being spilled. Petroleum oil is very hard to clean up and is very toxic to living animals.
Video Petroleum transport
Methods
Marine vessels
Marine oil tanker and barges can transport this petroleum all around the world. Because these vessels can carry a lot of fuel, the amount it costs per barrel to move this oil is very cheap. These tankers are also the only practical way to move crude oil across the oceans. Usually the larger tankers are used to transport this fuel on a global scale, taking fuel from onelalakdokodja continent to the other. Barges are more like tankers, but smaller and do not have any method of propulsion to move them. They are often pushed or towed by tugs. This makencadlfnwcasas barges very ineffective for transporting this oil for long distances. Barges are also not applicable for traveling across rough seas, so they are used in calmer waters. However, these barges are usually used for transporting the fuel shorter distances.
Pipelines
Pipelines are used to transport oil from the wells to refineries and storage facilities. Pipelines are viewed as the most cost efficient way to move oil on land. First the oil is collected at the wellhead, or some area where the oil is stored. From the wellhead it is pumped across the land through a pipe, and is discharged at its destination which typically is a refinery. However, pipelines can be used the same way to deliver already refined fuels such as gasoline, diesel and even jet fuel from the refinery to distribution facilities or a consumer. These pipelines are not just a solid line of straight pipe, but have various components on the pipeline. These pipelines will have booster pumps to keep the fuel moving along a long distance, inspection areas to make sure that the fuel is not getting any contaminants, and even other collection and delivery points along the way. Although it costs a lot of money and time to set up these pipelines, the operation cost is significantly less than using any other type of transportation. Also the amount of manpower needed to move this oil is not that much. Pipelines offer the most efficient mode of transporting this oil across a land mass. Even though these pipes are extremely cost effective there are some circumstances where this is not true and it is more logical to use another method. An example of this is how it is cheaper and more logical to use a ship to move the oil across the Atlantic Ocean than a pipeline.
Rail cars
Tank cars are another way to move crude oil across a landmass. The oil is loaded into the tank cars, and are moved by a diesel train across the rails to the refinery or the trains planned destination. Trains can carry a massive amount of this oil by using of multiple tank cars. Though each rail car holds a lot less oil than a large marine tanker vessel, when multiple are used a lot of oil can be transported. For example, the DOT-111 tank car is a very common tank car and can hold 34,500 US gallons (820 bbl; 131 m3). If ten tank cars were pulled the train would be carrying 345,000 US gallons (8,200 bbl; 1,310 m3) of oil, so the amount of volume increases rapidly. The locomotive used to pull these rail cars have a massive amount of horsepower and can be hooked up with other locomotives to increase the power, making the rail car a fairly cost effective way to move this oil. These rail cars, just like the pipelines, can be used to carry a refined fuel instead of crude oil from a refinery to a distributing plant. Rail cars are a common way to move this fuel a long distance to areas where they do not have pipelines set up.
Trucks
Tank trucks are used more like rail cars are, but they will usually transport refined fuel to a fuel station, like a gas station. Trucks are usually used to carry smaller capacities of oil short distances. Like rail cars, these trucks can carry several different forms of this petroleum, but they do not really carry the petroleum in its crude oil form because it would take a lot of trucks to deliver the volume of crude that the refineries demand. These trucks can deliver this fuel to gas stations, or deliver the fuel straight to the consumer. These trucks are used in situations where it would be illogical to use rail cars, pipelines and tanker ships. Places like gas stations; that are not able to be accessed by marine vessels, and do not demand the volume that is delivered by pipelines or trains, would get their fuel from tanker trucks. This allows a rational and cost effective way to deliver the fuel to the consumers through the gas station. Common sizes range from 400 up to 7,500 US gallons.
Maps Petroleum transport
Safety
The public debate surrounding the trade-offs between pipeline and rail transportation has been developing over the past decade as the amount of crude oil transported by rail has increased. It was invigorated in 2013 after the deadly Lac-Mégantic disaster in Quebec, Canada, when a freight train derailed and spilled 5.56 million litres of crude oil, which resulted in explosions and fires that destroyed much of the town's core. That same year, a train carrying propane and crude derailed near Gainford, Alberta, resulting in two explosions but no injuries or fatalities. These rail accidents, among other examples, have raised concerns that the regulation of rail transport is inadequate for large-scale crude oil shipments. Pipeline failures also occur, for instance, in 2015 a Nexen pipeline ruptured and leaked 5 million litres of crude oil over approximately 16,000 m2 at the company's Long Lake oilsands facility south of Fort McMurray. Although both pipeline and rail transportation are generally quite safe, neither mode is without risk. Numerous studies, however, indicate that pipelines are safer, based on the number of occurrences (accidents and incidents) weighed against the quantity of product transported. Between 2004 and 2015, the likelihood of rail accidents in Canada were 2.6 times greater than for pipelines per thousand barrels of oil equivalents (Mboe). Natural gas products were 4.8 times more likely to have a rail occurrence when compared to similar commodities transported by pipelines. Critics question if pipelines carrying diluted bitumen from Alberta's oil sands are more likely to corrode and cause incidents, but evidence shows the risk of corrosion being no different than that of other crude oils.
Pollution concerns
Every method of transporting this petroleum has the potential for a major oil spill. However, the amount of oil spilled while it is in transport is a small percentage of the total oil spilled. Most oil is spilled during loading and unloading and industrial plants accidentally spilling the oil into the ground. Regulations are created to help prevent oil from spilling excessively. Some of these regulations include forcing marine tankers to have double hulls, and enforcing a minimum two man crew on trains that are carrying crude oil. Although the least amount of oil spills happens when the oil is in transit, regulations are still enforced. If the oil is spilled while it is in a ship, tank truck, pipeline or rail car, it can result in fire, poisoning of plants, injuries and fatalities of the crew and citizens. There are also regulations put in place to prevent the spilling of oil and petroleum vapors while loading and unloading these fuels as well as processing the oil. The goal of these regulations is to make sure that all of the oil that is delivered or processed equals the amount of oil that was received. A simple example of this is the vapor guard on the nozzle of the gas pump at gas stations. These regulations make sure that the companies can oversee that there are no leaks in any pipes or equipment. When the oil is being processed is when it has a greater potential of being leaked, so constant watch is required. These regulations are constantly changing as more discoveries on how to better control oil spills are being found.
Costs: pipeline vs rail
A 2017 study by the National Bureau of Economic Research found that contrary to popular belief, the sum of air pollution and greenhouse gas emissions costs is substantially larger than accidents and spill costs for both pipelines and rail. For crude oil transported from the North Dakota Bakken Formation, air pollution and greenhouse gas (GHG) emission costs are substantially larger for rail compared to pipeline. For pipelines and rail, PHMSA's central estimate of spill and accident costs is $62 and $381 per million-barrel miles transported, respectively. Total GHG and air pollution costs are 8 times higher than accident and spills costs for pipelines ($531 vs 62$) and 3 times higher for rail ($1015 vs 381$).
Finally, transporting oil and gas by rail is generally more expensive for producers than transporting it by pipeline. On average, it costs between $10-$15 per barrel to transport oil and gas by rail compared to $5 a barrel for pipeline. In 2012, 16 million barrels of oil were exported to USA by rail. By 2014, that number increased to 59 million barrels. Although quantities decreased to 48 million in 2017, the competitive advantages offered by rail, particularly its access to remote regions, as well as lack of regulatory and social challenges compared with building new pipelines, will likely make it a viable transportation method for years to come. Both forms of transportation play a role in moving oil efficiently, but each has its unique trade-offs in terms of the benefits it offers.
References
External links
- Oil Transportation
- United States Department of Transportation. (n.d.). Bureau of Transportation Statistics. Table 1-61: Crude Oil and Petroleum Products Transported in the United States by Mode
Source of the article : Wikipedia